
Agoraplex Predicates Documentation
Release 0.0.3

Tripp Lilley

August 29, 2013

CONTENTS

1 Motivation and applications 3
1.1 API Documentation . 4
1.2 Indices and tables . 14

Python Module Index 15

i

ii

Agoraplex Predicates Documentation, Release 0.0.3

The predicates module provides a variety of predicates, predicate factories, and predicate partials.

“A predicate is a function that returns the truth value of some condition.”

—Andrew M. Kuchling, Python Functional Programming HOWTO

Predicate factories are functions which create new predicates based on their arguments (e.g., _and(), _nargs()).
Predicate partials are functions created by partial application of a predicate’s arguments.

The Agoraplex Predicates Library is licensed under the BSD “3-clause” license. See LICENSE for details.

CONTENTS 1

http://docs.python.org/2/howto/functional.html#built-in-functions
http://en.wikipedia.org/wiki/Partial_application

Agoraplex Predicates Documentation, Release 0.0.3

2 CONTENTS

CHAPTER

ONE

MOTIVATION AND APPLICATIONS

You could say that I hate Python’s lambda syntax, and that this is just a very indirect way of expressing it. While I do
dislike the syntax, that’s really not it at all...

predicates is actually part of an extensible (work-in-progress) way to build matchers (or selectors, or whatever
you call them). I.e., do something based on matching a value to a set of rules.

The original motivation was (is) a predicate dispatch library 1 for Python, but... something else came up.

>>> from predicates import (
... _any,
... _nis,
... _contains,
... isstring,
... _and,
... true_
...)

>>> def the_answer (*args, **kwargs):
... return "forty-two"

>>> def the_question (*args, **kwargs):
... return "what do you get when you multiply six by nine?"

>>> def other (*args, **kwargs):
... return "yeah. I got nuthin’. sorry."

>>> def marvin (*args, **kwargs):
... return "no, that’s okay, i’ll just sit here and rust."

>>> the_guide = (
... (_any(_nis(exactly=42)), the_question),
... (_any(_and(isstring, _contains("sad"))), marvin),
... (_any(

_and(isstring,
_contains("life", "the universe", "everything"))),

the_answer),
... (true_, other)
...)

>>> def dispatch (rules, *args, **kwargs):
... for (rule, method) in rules:
... if rule(*args, **kwargs):
... return method(*args, **kwargs)

1 ...which explains all of the argXXX predicates, I hope.

3

http://en.wikipedia.org/wiki/Predicate_dispatch

Agoraplex Predicates Documentation, Release 0.0.3

... raise NotImplementedError

>>> dispatch(the_guide, 42)
’what do you get when you multiply six by nine?’

>>> dispatch(the_guide, 23, 64, "how sad is he?")
"no, that’s okay, i’ll just sit here and rust."

>>> dispatch(the_guide,
... "he’s pondering the question.",
... "which question?",
... "THE question!",
... "life. the universe. everything!",
... "oh. that one.")
’forty-two’

Of course, that’s a very ugly example, since it doesn’t use decorators, or mine annotations 2. Worse, though, it uses
that brutally naïve linear probe through the predicates. While that allows giving rules precedence, it it also needlessly
repeats any shared tests, and, well, it’s just embarassing. So... future work on predicates will include a predicate
compiler and an optimizer. The compiler might expand boolean predicates into Python statements, instead of requiring
multiple nested function calls. The optimizer might, given a set of predicates, canonicalize them and build a tree, with
each leaf being one of the original set’s results.

Tomorrow Man 3 is gonna get right on that.

1.1 API Documentation

Documentation for every predicates API.

1.1.1 predicates — Predicates for functional programming

The predicates module provides a variety of predicates, predicate factories, and predicate partials.

“A predicate is a function that returns the truth value of some condition.”

—Andrew M. Kuchling, Python Functional Programming HOWTO

Predicate factories are functions which create new predicates based on their arguments (e.g., _and(), _nargs()).
Predicate partials are functions created by partial application of a predicate’s arguments.

Naming conventions

Predicates prefixed with an underscore (_) are predicate factories, returning callables, for composition, currying, or
delayed evaluation.

Predicates without a suffix, or suffixed with an underscore, are simple predicates (i.e., they act immediately). Most
of these begin with is (e.g., isstring(), isatom()). If present, the underscore suffix is to avoid conflicts with
keywords, in the style of not_).

Where names conflict with builtins or the standard library, an appropriate mnemonic prefix or suffix distinguishes
them.

2 Using anodi, for example...
3 Not to be confused with The Tomorrow Man, about whom Google just told me.

4 Chapter 1. Motivation and applications

http://docs.python.org/2/howto/functional.html#built-in-functions
http://en.wikipedia.org/wiki/Partial_application
http://pypi.python.org/pypi/anodi

Agoraplex Predicates Documentation, Release 0.0.3

There are a few places where we alias or duplicate builtins or standard library functions to present a consistently-named
set of functions. E.g., iscallable() is equivalent to callable().

Predicate composition

These functions take a sequence of predicates and return a callable which composes those predicates into a single
function. These are the complement of the Predicate application functions.

Unless otherwise noted, the signature of the returned callable is:

fn(*args, **kwargs)→ bool

E.g.,

>>> fn = _and(isstring, isempty)
>>> fn(’’)
True
>>> fn("bad robot!")
False

We may compose the composition predicates, themselves, too. E.g.,

>>> fn = _and(isstring, _not(isempty))
>>> fn("bad robot!")
True
>>> fn(’’)
False

Note that fn is passing *args and **kwargs to its predicates all at once, instead of applying them to each argument,
individually. We’re effectively calling each predicate as pred(*args, **kwargs), which, in this case, would be
pred(”, ”).

>>> fn(’’, ’’)
TypeError: _isa takes exactly 1 argument (2 given)

Passing two empty strings produces a TypeError. Since isstring() and isempty() each take only one
argument, we get the TypeError. The Predicate application functions apply a predicate to each argument.

To apply multiple predicates to multiple arguments, combine the composition and application factories. E.g., to ensure
that all of a function’s arguments are non-empty strings:

>>> non_empty_string = _and(isstring, _not(isempty))
>>> fn = _all(non_empty_string)
>>> fn("bad robot!")
True
>>> fn("bad robot!", "hurley")
True
>>> fn("bad robot!", ’’)
False
>>> fn("bad robot!", 4)
False

Explanation

Conceptually, you may think of the produced callables as applying their corresponding boolean comparisons to the
results of evaluating each predicate, in turn, on all of fn‘s arguments at once . The example above is equivalent to:

1.1. API Documentation 5

http://docs.python.org/2/library/functions.html#callable

Agoraplex Predicates Documentation, Release 0.0.3

>>> isstring(’’) and isempty(’’)
True
>>> isstring("bad robot!") and isempty("bad robot!")
False

These are also equivalent to (and, in fact, are implemented by) calling all(), etc., on a list comprehension which
applies each of the predicates onto fn‘s arguments. The function produced by the example above is:

predicates = (isstring, isempty)
def fn (*args, **kwargs):

return all(pred(*args, **kwargs) for pred in predicates)

which is equivalent to:

def fn (*args, **kwargs):
return all(pred(*args, **kwargs) for pred in (isstring, isempty))

which is equivalent to:

def fn (*args, **kwargs):
predicate_results = (isstring(*args, **kwargs), isempty(*args, **kwargs))
return all(predicate_results)

_and(*predicates)
Returns a callable which returns True if all predicates are true. This is short-circuiting.

_not(*predicates)
Returns a callable which returns True if none of the predicates are true.

_or(*predicates)
Returns a callable which returns True if any predicates are true. This is short-circuiting.

_zip(*predicates)
Returns a callable which returns True if each application of a predicate to its corresponding argument returns
True. I.e., it applies predicates[0] to args[0], predicates[1] to args[1], and so on. Technically,
this lives in the grey area between Predicate composition and Predicate application.

It inherits the truncation behaviour of zip() (i.e., it truncates to the shorter of predicates or args).

The callable ignores keyword arguments, if present.

TODO: What’s the correct mathematical term for this? The cross-product would be all predicates applied to
all arguments (i.e., n x m). While we’re on the subject, should we add a cross-product factory?

Predicate application

These functions take a single predicate and return a callable which applies that predicate to each of its arguments,
applying the corresponding boolean mapping to the results. These are the complement of the Predicate composition
functions.

Unless otherwise noted, the signature of the returned callable is:

fn(*args, **kwargs)→ bool

E.g.,

>>> fn = _all(isstring)
>>> fn()
True
>>> fn("bad robot!")
True

6 Chapter 1. Motivation and applications

http://docs.python.org/2/library/functions.html#all
http://docs.python.org/2/library/functions.html#zip

Agoraplex Predicates Documentation, Release 0.0.3

>>> fn("bad robot!", "jack")
True
>>> fn("bad robot!", "jack", 4, 8, 15, 16, 23, 42)
False
>>> fn(4)
False

_all(predicate)
Returns a callable which returns True if predicate returns True for all of its positional arguments.

_any(predicate)
Returns a callable which returns True if predicate returns True for any of its positional arguments.

_none(predicate)
Returns a callable which returns True if predicate returns True for none of its positional arguments.

_args(...)

_args is a special, extremely flexible, very overloaded predicate factory for applying predicates to a function’s argu-
ments. It is a singleton instance of ArgSlicer, the documentation for which covers all of the _args() use-cases.
It is a predicate application because it selects a set of arguments to which to apply a set of predicates.

class ArgSlicer
Flexible predicate factory to convert __getitem__() slices and direct calls (i.e., __call__()) into predi-
cate partials which apply a set of predicates to a subset of the callables’ arguments.

All access is through its (unenforced) singleton instance, _args(), but we expose the class for subclassing,
monkeypatching, etc.

Examples are the best way to explain this beast.

•__getitem__() access to positional arguments.

Ensure that first positional arg (args[0]), if present, is a string. Imposes no constraints on other posiitional
or keyword args.

>>> fn = _args[0](isstring)
>>> fn()
True
>>> fn(’jack’)
True
>>> fn(4)
False
>>> fn(’jack’, 8, kate=15)
True

Ensure that the first two positional args (args[0:2]), if present, are strings. Imposes no constraints on other
positional or keyword args.

>>> fn = _args[0:2](isstring)
>>> fn()
True
>>> fn(’jack’)
True
>>> fn(’jack’, 8)
False
>>> fn(’jack’, ’sawyer’, 15, kate=15)
True

Ensure that any positional args are strings. Imposes no constraints on keyword args.

1.1. API Documentation 7

http://docs.python.org/2/reference/datamodel.html#object.__getitem__
http://docs.python.org/2/reference/datamodel.html#object.__call__
http://docs.python.org/2/reference/datamodel.html#object.__getitem__

Agoraplex Predicates Documentation, Release 0.0.3

>>> fn = _args[:](isstring)
>>> fn()
True
>>> fn(’jack’)
True
>>> fn(’jack’, 8)
False
>>> fn(’jack’, ’sawyer’, kate=15)

•__call__() access to positional arguments:

Ensure all positional arguments are strings. Imposes no constraints on keyword args. This is equivalent to
(and, in fact, is implemented as) the _args[:](isstring) example, above.

>>> fn = _args(isstring)
>>> fn()
True
>>> fn(’jack’)
True
>>> fn(’jack’, 8)
False
>>> fn(’jack’, ’sawyer’, kate=15)

•__call__() access to keyword arguments:

Ensure that keyword arguments jack and kate exist, and that jack is a string, and kate is an integer.
Imposes no constraints on positional or other keyword args.

>>> fn = _args(jack=isstring, kate=isint)

>>> fn()
False
>>> fn(jack=’’, kate=15)
True
>>> fn(jack=’’)
False
>>> fn(jack=4)
False
>>> fn(4, 8, jack=’’, kate=15)
True

•__call__() access to positional and keyword arguments:

Ensure that keyword arguments jack and kate exist, that jack is a string, that kate is an integer, and that
any positional arguments are strings. Imposes no constraints on other keyword args.

>>> fn = _args(isstring, jack=isstring, kate=isint)

>>> fn()
False
>>> fn(jack=’’, kate=15)
True
>>> fn("bad robot!", jack=’’, kate=15)
True
>>> fn("bad robot!", jack=’’)
False
>>> fn(jack=4)
False
>>> fn(4, 8, jack=’’, kate=15)
False

8 Chapter 1. Motivation and applications

http://docs.python.org/2/reference/datamodel.html#object.__call__
http://docs.python.org/2/reference/datamodel.html#object.__call__
http://docs.python.org/2/reference/datamodel.html#object.__call__

Agoraplex Predicates Documentation, Release 0.0.3

•Mixed __getitem__() and __call__() access to positional and keyword arguments:

Ensure that keyword arguments jack and kate exist, that jack is a string, that kate is an integer, and
that the first two positional arguments (args[0:2]), if present, are strings. Imposes no constraints on other
positional or keyword arguments.

>>> fn = _args[0:2](isstring, jack=isstring, kate=isint)
>>> fn()
False
>>> fn(jack=’’, kate=15)
True
>>> fn("bad robot!", jack=’’, kate=15)
True
>>> fn("bad robot!", ’sawyer’, jack=’’, kate=15)
True
>>> fn("bad robot!", ’sawyer’, 23, jack=’’, kate=15)
True
>>> fn(4, "bad robot!", jack=’’, kate=15)
False
>>> fn("bad robot!", ’sawyer’, 23, jack=4, kate=’15’)
False

Note: TODO: use multi-dimensional extended slice syntax to apply predicates to specific args. E.g.,

>>> fn = _args[0, 1, 3:5](isstring, isint, isfloat, hurley=isint)
>>> fn("bad robot!", 4, (), 8.0, 15.0, hurley=16)
True

Another option is to put the keyword args into the slice:

>>> fn = _args[0, 1, 3:5, ’hurley’](
... isstring, isint, isfloat, isint)
>>> fn("bad robot!", 4, (), 8.0, 15.0, hurley=16)
True

...or is it starting to get ridiculous? I don’t like the increasing distance between the arg selector (the key to
__getitem__()) and the corresponding predicate. Maybe we should move to the simpler _args(p0,
p1, p2, key1=p3, key2=p4) form? Combining _all() and _apply() would let us duplicate the
behaviour of the current _args(predicate), but we’d lose the ability to (easily) apply separate predicates
to ranges of args, including overlapping ranges, like we get with the multidimensional slice. E.g.,

>>> fn = _args[0:4, 3:5](isstring, _not(isempty))
>>> fn(’’, ’’, "bad robot!")
True
>>> fn(’’, "bad robot!", ’’, ’jack’, (42,))
True
>>> fn(’’, "bad robot!", ’’, ’jack’, ())
False

Ultimately, what I’m looking for is a “single point of truth” for specifying, concisely, constraints on all of the
arguments I care about.

Argument predicates

These are predicate factories which check constraints on the presence or absence of the arguments with which the
resulting predicates are called. I.e., the new predicates evaluate the structure of their arguments, not their values.

Unless otherwise noted, the signature of the returned callable is:

1.1. API Documentation 9

http://docs.python.org/2/reference/datamodel.html#object.__getitem__
http://docs.python.org/2/reference/datamodel.html#object.__call__
http://docs.python.org/2/reference/datamodel.html#object.__getitem__

Agoraplex Predicates Documentation, Release 0.0.3

fn(*args, **kwargs)→ bool

E.g., to test whether or not the new predicate receives at least one argument:

>>> fn = _npos(atleast=1)
>>> fn()
False
>>> fn("bad robot!")
True
>>> fn("bad robot!", "jack")
True

To test whether or not the new predicate receives at least the keyword arguments jack and sawyer:

>>> fn = _inkw(atleast=(’jack’, ’sawyer’)
>>> fn(4)
False
>>> fn(jack=4, sawyer=8)
True

_nargs(atleast=False, atmost=False, exactly=False)
Returns a callable which returns True if it is called with at least, at most, or exactly the number of positional
and keyword arguments specified in atleast, atmost, and exactly, respectively. See _npos() and _nkw() for
separate constraints on positional and keyword args, respectively.

atleast and atmost may be combined, but exactly must stand alone.

_npos(atleast=False, atmost=False, exactly=False)
Returns a callable which returns True if it is called with at least, at most, or exactly the number of positional
arguments specified in atleast, atmost, and exactly, respectively. See _nkw() and _nargs().

atleast and atmost may be combined, but exactly must stand alone.

_nkw(atleast=False, atmost=False, exactly=False)
Returns a callable which returns True if it is called with at least, at most, or exactly the number of keyword
arguments specified in atleast, atmost, and exactly, respectively. See _npos() and _nargs().

atleast and atmost may be combined, but exactly must stand alone.

_inkw(atleast=False, atmost=False, exactly=False)
Returns a callable which returns True if it has at least, at most, or exactly, the keyword arguments specified.
This constrains the argument names, while _nkw() constrains the number of arguments.

Note, too, that this does not constrain the keyword arguments’ values.

atleast and atmost may be combined, but exactly must stand alone.

TODO: add a new predicate, or extend this one, to validate keyword argument values (which means we’ll also
need an equivalent predicate for positional args, and one for mixed positional and keyword args.)

Value predicates

These predicates test aspects of the values of their arguments. E.g., isempty(val) tests that val has zero length,
without making demands on its type (iterability, etc.), beyond its implementing __len__.

isempty(val)
True if val is empty. Empty, here, means zero-length, not ‘false-y’. I.e., False and 0 are not empty, even
though they are false in a boolean context.

Use truth() and not_() for ‘standard’ truth testing.

10 Chapter 1. Motivation and applications

http://docs.python.org/2/library/constants.html#False
http://docs.python.org/2/library/operator.html#operator.truth
http://docs.python.org/2/library/operator.html#operator.not_

Agoraplex Predicates Documentation, Release 0.0.3

_contains(*contents)
Returns a callable which returns True if each member of contents is a member of its container argument.

The signature of the returned callable is:

fn(container:Container)→ bool

Type predicates

These predicates test aspects of the type of their arguments. E.g., isstring(val) tests that val is a string (str()
or unicode()), without making demands on its value (empty, non-empty, etc.)

They are composable, since they test only the features they need. E.g., _and(iscallable, isiterable)
would be True for any class which implemented both __call__ and __iter__.

Type predicate factory

_isa(classinfo, docstring=None)
A wrapper around isinstance() to swap the argument ordering, so it can be used as a partial.

The signature of the returned callable is:

fn(obj)→ bool

If docstring is supplied, it will become the docstring of the new callable. If docstring is None, a docstring will
be created based on classinfo.

Generated type predicates

isatom(val)
True if val looks ‘atomic’ (i.e., is a string, or any non-iterable). This is a naive test: any non-string iterable
yields False.

isiterable(obj)
True if obj is iterable.

isnsiterable(obj)
True if obj is a non-string iterable

iscallable(obj)
True if obj is callable.

iscontainer(obj)
True if obj is a container.

ishashable(obj)
True if obj is hashable.

isiterator(obj)
True if obj is an iterator.

ismap(obj)
True if obj is a mapping.

ismmap(obj)
True if obj is a mutable mapping.

ismapv(obj)
True if obj is a mapping view.

1.1. API Documentation 11

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#unicode
http://docs.python.org/2/library/functions.html#isinstance
http://docs.python.org/2/library/constants.html#None
http://docs.python.org/2/library/constants.html#False

Agoraplex Predicates Documentation, Release 0.0.3

isitemsv(obj)
True if obj is an items view.

iskeysv(obj)
True if obj is a keys view.

isvalsv(obj)
True if obj is a values view.

isseq(obj)
True if obj is a sequence.

ismseq(obj)
True if obj is a mutable sequence.

isset(obj)
True if obj is a set.

ismset(obj)
True if obj is a mutable set.

issized(obj)
True if obj has a __len__() method.

isslice(obj)
True if obj is a slice().

islist(obj)
True if obj is a list().

istuple(obj)
True if obj is a tuple().

isstring(obj)
True if obj is a string.

isstr(obj)
True if obj is an str().

isunicode(obj)
True if obj is a unicode string.

isbool(obj)
True if obj is a bool().

isint(obj)
True if obj is an int().

islong(obj)
True if obj is a long().

isfloat(obj)
True if obj is a float().

Identity predicates

These predicates test object identity (i.e., the is operator).

12 Chapter 1. Motivation and applications

http://docs.python.org/2/reference/datamodel.html#object.__len__
http://docs.python.org/2/library/functions.html#slice
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#tuple
http://docs.python.org/2/library/functions.html#basestring
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#unicode
http://docs.python.org/2/library/functions.html#bool
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#long
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/reference/expressions.html#is

Agoraplex Predicates Documentation, Release 0.0.3

Identity predicate factory

_is(it, docstring=None)
A wrapper around is_() to set the docstring (which partial() does not).

Generated identity predicates

isnone(obj)
True if obj is None.

istrue(obj)
True if obj is True.

isfalse(obj)
True if obj is False.

Helpers

These functions are the foundations upon which several of the predicates are built. They may be useful when writing
new predicates that are more than composition and application of the existing predicates.

_apply(func)
Returns a callable which expands its args and kwargs into the *args and **kwargs of func. It’s equivalent to
partial(apply, func), except that apply() is deprecated.

The signature of the returned callable is:

fn(args=(), kwargs={})→ object

Its principal use is to make predicates which operate on all of their arguments (i.e., *args) oper-
ate on any iterable. E.g., _apply(_all(isstring))([’jack’, ’kate’]) is equivalent to
_all(isstring)(’jack’, ’hurley’).

This is especially useful when testing the contents of arguments passed to a _zip() callable. E.g.,

>>> int_and_strings = _zip(isint, _apply(_all(isstring)))
>>> int_and_strings(42, [’jack’, ’kate’, ’sawyer’])
True

_return(val)
Always returns val.

WHY?!? Because, sometimes you need a callable that’s just a closure over return val. E.g., in the ‘no
contents’ special-case in _contains().

NOTE: This is one of the few memoized factories, because we don’t want a proliferation of _return(True) and
return(False) helpers (of course, that’s why we have true() and false_(), but no matter).

_nis(atleast=False, atmost=False, exactly=False)
Returns a callable which returns True if n is >= atleast, <= atmost, or == exactly. See _nargs(), _nkw(),
etc., for example use.

The signature of the returned callable is:

fn(n:number)→ bool

atleast and atmost may be combined, but exactly must stand alone.

1.1. API Documentation 13

http://docs.python.org/2/library/operator.html#operator.is_
http://docs.python.org/2/library/functools.html#functools.partial
http://docs.python.org/2/library/constants.html#None
http://docs.python.org/2/library/constants.html#True
http://docs.python.org/2/library/constants.html#False
http://docs.python.org/2/library/functions.html#apply

Agoraplex Predicates Documentation, Release 0.0.3

_fnis(func, atleast=False, atmost=False, exactly=False)
Returns a callable which returns True if the result of func(*args, **kwargs) is >= atleast <= atmost,
or == exactly. See _nargs(), _nkw(), etc., for example use.

atleast and atmost may be combined, but exactly must stand alone.

1.2 Indices and tables

• genindex

• modindex

• search

The predicates module provides a variety of predicates, predicate factories, and predicate partials.

“A predicate is a function that returns the truth value of some condition.”

—Andrew M. Kuchling, Python Functional Programming HOWTO

Predicate factories are functions which create new predicates based on their arguments (e.g., _and(), _nargs()).
Predicate partials are functions created by partial application of a predicate’s arguments.

1.2.1 LICENSE

Copyright (c) 2013, Tripp Lilley <tripplilley@gmail.com> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither Agoraplex, nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

14 Chapter 1. Motivation and applications

http://docs.python.org/2/howto/functional.html#built-in-functions
http://en.wikipedia.org/wiki/Partial_application
mailto:tripplilley@gmail.com

PYTHON MODULE INDEX

p
predicates, 4

15

	Motivation and applications
	API Documentation
	Indices and tables

	Python Module Index

